

Multiple Zones of Significant Gold Anomalism Identified at Target 3 at Laverton South

- Major air-core drilling program now complete at Laverton South, with over 17,000m drilled across Target 3 and Target 4.
- E79 has started to receive assays from Target 3, with 80 holes returned so far and 96 holes outstanding.
- Two main zones of anomalism emerging at Target 3 within parallel 1,600m long zones of anomalous gold. The central zone has a core 600m long by 120m wide zone of anomalous gold to end-of-hole, while the western zone shows higher levels of gold anomalism.
- Deeper follow-up RC drilling is planned at both zones at Target 3 later this year.

West Australian-based explorer E79 Gold Mines Limited (**ASX: E79**) ('E79 Gold' or 'the Company') is pleased to provide a drilling update for its Laverton South Gold Project.

E79 Gold has 896km² of prospective ground within its two flagship projects, the Laverton South Project in the world-class Laverton gold district and the Jungar Flats Project in the North Murchison region.

E79 Gold CEO, **Ned Summerhayes**, **said**: "The air-core program at Target 3 was to in-fill the wide spaced drill lines from the previous program and extend the anomaly to the south, where it remains open. The assays received so far are from the in-fill part of the program. The identification of a central core is an exciting development: in addition to being below the regional paleochannel, the central core target shows a thick zone of anomalous gold to the end-of-hole. The gold pathfinder elements, evidence of fluid flow and location close to a granite/sediment/mafic contact at the central core zone has analogies to large deposits in the region such as Victory (St Ives) and Sunrise Dam (AngloGold Ashanti), both of which were discovered under thick transported cover with RAB/AC drilling giving the first clues to the mineralisation. We look forward to testing this target at depth with the upcoming RC drilling program."

ASX Code: E79

Shares on issue: 66M Market capitalisation: 7.3M Cash: \$6.15M (30 September 2022) ABN 34 124 782 038

Head Office

Level 1, 168 Stirling Hwy Nedlands, Western Australia 6009 T: +61 8 9287 7625 E: info@e79gold.com.au W: e79gold.com.au

Laverton South Project

Pinjin (100%) and Lake Yindana (100%)

The Laverton South Project, with an area of 355km², covers a southern portion of the Laverton Tectonic Zone ('LTZ') approximately 130km east-northeast of Kalgoorlie, within the major gold producing Archean Yilgarn Craton of Western Australia.

Pinjin (E28/2283, E28/2284, E28/2375, E31/0999, E31/1005, E31/1007, E31/1056, E31/1082) E79 100%

E79 Gold recently completed 176 holes for 14,350m over Target 3. Drilling was designed to in-fill the Company's previous wide-spaced air-core drilling lines from 320m to 160m, and to extend the target to the south.

Figure 1: Map of air-core drill holes at Target 3.

Assay results from the first 80 holes of the program, which consists only of in-fill drilling, shows thick zones of gold anomalism in anticipated positions.

Importantly, a Central Core zone has been identified where a thick zone of anomalous gold persists until the end-of-hole. This is important as the limitations of air-core drilling is that the rig cannot easily penetrate hard fresh rock, meaning the anomalism may extend at depth.

Best results include:

- 18m @ 0.15 g/t Au from 52m (22LRAC246) (east end of drill line)
- 8m @ 0.21 g/t Au from 48m (22LRAC256)
- 19m @ 0.13 g/t Au from 80m (22LRAC264)
- 12m @ 0.19 g/t Au from 68m (22LRAC268)
- 5m @ 0.24 g/t Au from 112m (22LRAC268)
- 20m @ 0.16 g/t Au from 84m (22LRAC269) to end-of-hole
- 4m @ 0.54 g/t Au from 88m (22LRAC271)
- 8m @ 0.42 g/t Au from 76m (22LRAC297)
- 8m @ 0.28 g/t Au from 100m (22LRAC308) to end-of-hole

Along with end-of-hole multi-element data and spectral data, these new results show that the Central Core target forms a 600m long, 120m wide linear zone and is located along the contacts of granitic and basalt/sediment unit, with evidence of large-scale fluid flow.

The gold anomalism is also associated with pathfinder elements including As, Cu, Zn, Pb and W, which show elevated values along the contact region.

The Central Core Target contains thick zones of anomalous gold over four consecutive drill lines, with best results from north to south:

- 20m @ 0.16 g/t Au from 84m (22LRAC269) to end-of-hole
- 24m @ 0.20 g/t Au from 80m (22LRAC036)¹ to end-of-hole
- 8m @ 0.29 g/t Au from 100m (22LRAC308) to end-of-hole
- 5m @ 0.14 g/t Au from 72m (22LRAC015)² to end-of-hole

This Central Core also sits in a demagnetised zone on the regional magnetics. E79 Gold believes that the demagnetism is caused by magnetite destruction mineralising gold fluids, as seen in many large gold deposits in the region such as Sunrise Dam and Victory at St Ives. Deeper RC drilling to test this target will commence later in the year.

¹ Refer to ASX 7 June 2022

² Refer to ASX 7 June 2022

A second zone to the west also shows thick zones of anomalous gold below the paleochannel. This target sits within basalt and is located within a larger, 1,600m long zone of gold anomalism identified from earlier E79 and St Barbara air-core drilling. Within this western zone, a 500m long zone of thick gold anomalism has been identified with slightly higher grades than those seen in the central target. This western target sits to the west of a subtle magnetic high. This target will also be tested by the deeper RC program later in the year.

Figure 2: Map of Pinjin Project with recently drilled targets

A second air-core program, targeting gold along the eastern side of the intrusion at Target 4 has also been completed with 95 holes drilled for 3,905m.

This target sits in the same stratigraphic position as the 8km long historic Pinjin goldfields, which includes the Anglo Saxon and Cole open pits to the south and the historic Patricia high-grade open pits to the north. Historic drilling had identified a 2.5km long gold anomaly in wide-spaced regional air-core drilling. The Company's recently completed drilling was designed to in-fill and extend this anomalous zone to identify a potentially higher-grade zone within the anomaly. Samples are due to return from the lab in the coming months.

Lake Yindana (E28/2659) 100%

Lake Yindana covers an area of 215km² in the southern portion of the +30Moz LTZ, approximately 130km east-northeast of Kalgoorlie (Figure 3).

The Project consists of a large untested greenstone belt, defined by corroborating magnetics and gravity data, as well as historic drilling, which runs for over 25km through the tenement.

Lithologies from the historic drilling show gabbro, ultramafic and granitic gneiss, with the latter being a similar host rock to Ramelius Resources' Lake Rebecca deposit, located 9km to the north-west.

In addition, interpretation of recent gravity data suggests the presence of intrusion-related targets within the greenstone stratigraphy.

E79 Gold believes that the largest deposits are typically found early in new exploration search spaces, and the recently identified greenstone belt at Lake Yindana represents an exciting 'first mover' opportunity.

Murchison Project

Jungar Flats

(E51/1975, E51/1803, E51/1848, E20/0926, E51/2122) 100%, (E51/1681) 100% of Mineral Rights (excluding iron ore and ferrous minerals)

The Jungar Flats Project, in the North Murchison region, is located 70km west of Meekatharra and 45km north-northeast of the 2.8Moz Big Bell gold deposit. The Project tenure covers an area of 541km², contains approximately 90km of strike of the highly prospective Big Bell Shear, and straddles a narrow north-south trending greenstone belt.

The area is prospective for gold, base metals, iron ore and PGE's.

ABOUT E79 GOLD MINES LIMITED (ASX: E79)

E79 Gold's Projects comprise ~895km² of highly prospective ground within the LTZ and the Murchison Goldfields, both of which are endowed with >30 million ounces of gold (Figure 3). The Laverton South Project is located 130km east-northeast of Kalgoorlie while the Jungar Flats (Murchison) Project is located 70km west of Meekatharra. The Projects are a mix of early stage greenfields exploration and walk-up drill targets.

E79 Gold is an active explorer with a motto of spending money in the ground.

Figure 3: Yilgarn Craton Greenstones showing Project locations.

Planned and Recent Activities

E79 Gold is planning a busy and active initial 12 months over the Laverton South and Jungar Flats (Murchison) Projects including:

- November-December 2022 Large scale soil sampling program at Jungar Flats
- > **November 2022** Present at RIU Resurgence Conference, Perth
- > December 2022 Deeper RC testing at Laverton South
- > **December 2022** Present at RRS Summer Series in Sydney and Melbourne

Our motto: Money in the ground.

Yours sincerely,

E Pages

Ned Summerhayes

Chief Executive Officer

The information in this report that relates to Exploration Results is based on information compiled by Mr Ned Summerhayes, a Competent Person who is a member of the Australian Institute of Geoscientists. Mr Summerhayes is a full-time employee, a shareholder and an option holder of the Company. Mr Summerhayes has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Summerhayes consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Authorised for release by the CEO of E79 Gold Mines Limited.

For Further Information, please contact:

E79 Gold Mines Limited	Media Enquiries:
Phone: 08 9287 7625	Nicholas Read – Read Corporate
info@e79gold.com.au	Phone: 08 9388 1474

Table 1. Aircore drilling completed at Target 3 (results showing >0.05 g/t Au, 4m of internal dilution)

Hole ID	Nat East	Nat North	Nat RL	Dip	Azimuth	From (m)	To (m)	Au Grade (g/t)
22LRAC242	473934	6665826	353	-60	270			No Significant Intersection
22LRAC243	473973	6665827	355	-60	270			No Significant Intersection
22LRAC244	474013	6665828	353	-60	270			No Significant Intersection
22LRAC245	474054	6665828	355	-60	270	56	60	4m @ 0.05 g/t
22LRAC246	474097	6665824	353	-60	270	52	70	18m @ 0.15 g/t
22LRAC247	472933	6665341	344	-60	270			No Significant Intersection
22LRAC248	472971	6665346	349	-60	270			No Significant Intersection
22LRAC249	473011	6665345	348	-60	270			No Significant Intersection
22LRAC250	473051	6665348	349	-60	270			No Significant Intersection
22LRAC251	473092	6665343	347	-60	270			No Significant Intersection
22LRAC252	473131	6665341	353	-60	270	48	52	4m @ 0.06 g/t
22LRAC253	473174	6665346	347	-60	270			No Significant Intersection
22LRAC254	473209	6665346	348	-60	270	48	52	4m @ 0.06 g/t
22LRAC255	473253	6665349	350	-60	270	56	60	4m @ 0.1 g/t
22LRAC256	473293	6665344	348	-60	270	48	56	8m @ 0.21 g/t
22LRAC257	473336	6665342	350	-60	270	12	16	4m @ 0.08 g/t
22LRAC257	473336	6665342	350	-60	270	48	56	8m @ 0.06 g/t
22LRAC258	473375	6665345	352	-60	270			No Significant Intersection
22LRAC259	473414	6665344	350	-60	270			No Significant Intersection
22LRAC260	473456	6665343	350	-60	270	52	56	4m @ 0.07 g/t
22LRAC261	473494	6665346	349	-60	270			No Significant Intersection
22LRAC262	473529	6665347	351	-60	270			No Significant Intersection
22LRAC263	473573	6665344	348	-60	270			No Significant Intersection
22LRAC264	473610	6665352	353	-60	270	80	99	19m @ 0.13 g/t
22LRAC265	473651	6665348	353	-60	270			No Significant Intersection
22LRAC266	473690	6665344	353	-60	270			No Significant Intersection
22LRAC267	473733	6665345	349	-60	270	68	80	12m @ 0.08 g/t
22LRAC267	473733	6665345	349	-60	270	92	96	4m @ 0.12 g/t
22LRAC268	473773	6665345	350	-60	270	68	80	12m @ 0.19 g/t
22LRAC268	473773	6665345	350	-60	270	112	117	5m @ 0.24 g/t
22LRAC269	473815	6665344	350	-60	270	72	76	4m @ 0.12 g/t
22LRAC269	473815	6665344	350	-60	270	84	104	20m @ 0.16 g/t
22LRAC270	473853	6665345	351	-60	270			No Significant Intersection
22LRAC271	473894	6665346	349	-60	270	68	72	4m @ 0.06 g/t
22LRAC271	473894	6665346	349	-60	270	88	92	4m @ 0.54 g/t
22LRAC271	473894	6665346	349	-60	270	98	99	1m @ 0.09 g/t
22LRAC272	473935	6665346	353	-60	270	88	92	4m @ 0.06 g/t
22LRAC273	473974	6665344	356	-60	270	64	68	4m @ 0.21 g/t
22LRAC274	474006	6665347	354	-60	270	96	100	4m @ 0.06 g/t
22LRAC275	474053	6665347	351	-60	270			No Significant Intersection

22LRAC276	474095	6665347	355	-60	270	68	72	4m @ 0.07 g/t
22LRAC277	474139	6665345	349	-60	270	64	68	4m @ 0.05 g/t
22LRAC278	474168	6665345	360	-60	270			No Significant Intersection
22LRAC279	474213	6665344	355	-60	270			No Significant Intersection
22LRAC280	473030	6665185	346	-60	270			No Significant Intersection
22LRAC281	473068	6665178	351	-60	270			No Significant Intersection
22LRAC282	473111	6665182	357	-60	270			No Significant Intersection
22LRAC283	473149	6665181	348	-60	270			No Significant Intersection
22LRAC284	473189	6665183	346	-60	270			No Significant Intersection
22LRAC285	473932	6665183	351	-60	270			No Significant Intersection
22LRAC286	473970	6665181	353	-60	270			No Significant Intersection
22LRAC287	474010	6665182	351	-60	270			No Significant Intersection
22LRAC288	474048	6665186	355	-60	270			No Significant Intersection
22LRAC289	474092	6665182	358	-60	270			No Significant Intersection
22LRAC290	473130	6665028	349	-60	270			No Significant Intersection
22LRAC291	473174	6665030	351	-60	270			No Significant Intersection
22LRAC292	473208	6665030	348	-60	270			No Significant Intersection
22LRAC293	473254	6665029	350	-60	270			No Significant Intersection
22LRAC294	473296	6665030	351	-60	270			No Significant Intersection
22LRAC295	473332	6665029	352	-60	270			No Significant Intersection
22LRAC296	473373	6665030	353	-60	270			No Significant Intersection
22LRAC297	473414	6665027	349	-60	270	76	84	8m @ 0.42 g/t
22LRAC298	473453	6665028	355	-60	270			No Significant Intersection
22LRAC299	473492	6665026	348	-60	270	68	72	4m @ 0.09 g/t
22LRAC300	473535	6665025	353	-60	270	44	48	4m @ 0.08 g/t
22LRAC300	473535	6665025	353	-60	270	76	80	4m @ 0.06 g/t
22LRAC301	473575	6665026	356	-60	270	80	84	4m @ 0.05 g/t
22LRAC302	473615	6665027	341	-60	270	80	84	4m @ 0.06 g/t
22LRAC303	473655	6665025	349	-60	270			No Significant Intersection
22LRAC304	473692	6665025	352	-60	270			No Significant Intersection
22LRAC305	473731	6665023	350	-60	270			No Significant Intersection
22LRAC306	473774	6665028	355	-60	270	76	80	4m @ 0.06 g/t
22LRAC306	473774	6665028	355	-60	270	92	94	2m @ 0.05 g/t
22LRAC307	473813	6665023	353	-60	270			No Significant Intersection
22LRAC308	473848	6665025	355	-60	270	72	76	4m @ 0.08 g/t
22LRAC308	473848	6665025	355	-60	270	100	108	8m @ 0.28 g/t
22LRAC309	473894	6665026	358	-60	270	72	76	4m @ 0.06 g/t
22LRAC309	473894	6665026	358	-60	270	107	109	2m @ 0.07 g/t
22LRAC310	473931	6665028	357	-60	270	72	76	4m @ 0.1 g/t
22LRAC311	473970	6665029	355	-60	270			No Significant Intersection
22LRAC312	474011	6665030	361	-60	270	72	76	4m @ 0.11 g/t
22LRAC313	474053	6665027	350	-60	270	68	72	4m @ 0.05 g/t
22LRAC314	474092	6665029	354	-60	270			No Significant Intersection
22LRAC315	474132	6665028	350	-60	270	80	84	4m @ 0.06 g/t

221 PAC 216	171171	6665021	252	-60	270	No	Significant Intersection
22LINAC310	474171	6665029	355	-60	270	No	Significant Intersection
22LRAC318	473135	6664709	350	-60	270	No	Significant Intersection
22LRAC319	473176	6664707	350	-60	270	No	Significant Intersection
22LRAC320	473214	6664703	345	-60	270	No	Significant Intersection
22LRAC321	473252	6664704	348	-60	270	No	Significant Intersection
22LRAC322	473294	6664704	345	-60	270		Assays not returned
22LIV (C322	473333	6664706	350	-60	270		Assays not returned
22LRAC324	473376	6664702	346	-60	270		Assays not returned
22LIV C324	473415	6664709	347	-60	270		Assays not returned
221 RAC 326	473454	6664709	350	-60	270		Assays not returned
221 RAC 327	473494	6664709	349	-60	270		Assays not returned
22LRAC328	473537	6664705	352	-60	270		Assays not returned
22LRAC329	473572	6664706	348	-60	270		Assays not returned
22LRAC330	473615	6664707	353	-60	270		Assays not returned
22LRAC331	473656	6664707	348	-60	270		Assays not returned
22LRAC332	473694	6664708	345	-60	270		Assays not returned
22LINAC332	473732	6664702	355	-60	270		Assays not returned
22LRAC334	473769	6664707	347	-60	270		Assays not returned
22LIVAC335	473811	6664705	351	-60	270		Assays not returned
22LINAC335	473855	6664709	344	-60	270		Assays not returned
22LIAC330	473890	6664711	3/17	-60	270		Assays not returned
221 RAC338	473930	6664708	3/18	-60	270		Assays not returned
22LINAC330	473971	6664709	348	-60	270		Assays not returned
22LRAC340	474021	6664707	347	-60	270		Assays not returned
22LRAC341	474052	6664705	346	-60	270		Assays not returned
22LRAC342	474093	6664709	346	-60	270		Assays not returned
221 RAC 343	474135	6664705	356	-60	270		Assays not returned
22LRAC344	474176	6664705	351	-60	270		Assays not returned
22LIV C345	474212	6664707	351	-60	270		Assays not returned
221 RAC346	473283	6664210	345	-60	270		Assays not returned
22LRAC347	473320	6664210	342	-60	270		Assays not returned
22LIAC347	473365	6664212	342	-60	270		Assays not returned
22LRAC349	473402	6664209	340	-60	270		Assays not returned
22LRAC350	473442	6664209	341	-60	270		Assays not returned
22LIAC350	473442	6664209	338	-60	270		Assays not returned
221174C351	473400	6664210	2/1	-60	270		Assays not returned
22LINAC352	473522	6664208	2/12	-60	270		Assays not returned
22LINAC355	473502	6664207	2/2	-60	270		Assays not returned
2211740334	473003	6664212	251	-00	270		Assays not returned
22LNAC333	473041	666/211	2/0	-00	270		Assays not returned
221040300	4/3082	6664210	240	-00	270		Assays not returned
22LRAU30/	4/5/24	6664200	247	-00	270		Assays not returned
22LKAC358	4/3/62	6664208	344	-60	270		
ZZLKAC359	4/3/90	0004209	341	-60	270		Assays not returned

22LRAC360	473839	6664211	344	-60	270		Assays not returned
22LRAC361	473884	6664216	362	-60	270		Assays not returned
22LRAC362	473921	6664210	348	-60	270		Assays not returned
22LRAC363	473962	6664208	344	-60	270		Assays not returned
22LRAC364	474002	6664210	344	-60	270		Assays not returned
22LRAC365	474039	6664212	351	-60	270		Assays not returned
22LRAC366	474083	6664208	347	-60	270		Assays not returned
22LRAC367	474116	6664207	346	-60	270		Assays not returned
22LRAC368	474161	6664209	353	-60	270		Assays not returned
22LRAC369	474201	6664210	351	-60	270		Assays not returned
22LRAC370	474240	6664208	349	-60	270		Assays not returned
22LRAC371	474280	6664204	347	-60	270		Assays not returned
22LRAC372	473361	6663892	339	-60	270		Assays not returned
22LRAC373	473400	6663892	344	-60	270		Assays not returned
22LRAC374	473441	6663892	343	-60	270		Assays not returned
22LRAC375	473480	6663889	343	-60	270		Assays not returned
22LRAC376	473522	6663889	341	-60	270		Assays not returned
22LRAC377	473561	6663886	352	-60	270		Assays not returned
22LRAC378	473602	6663886	355	-60	270		Assays not returned
22LRAC379	473644	6663889	351	-60	270		Assays not returned
22LRAC380	473675	6663891	352	-60	270		Assays not returned
22LRAC381	473720	6663888	351	-60	270		Assays not returned
22LRAC382	473759	6663888	350	-60	270		Assays not returned
22LRAC383	473799	6663889	344	-60	270		Assays not returned
22LRAC384	473839	6663891	346	-60	270		Assays not returned
22LRAC385	473881	6663891	345	-60	270		Assays not returned
22LRAC386	473921	6663890	346	-60	270		Assays not returned
22LRAC387	473961	6663892	347	-60	270		Assays not returned
22LRAC388	474000	6663890	346	-60	270		Assays not returned
22LRAC389	474040	6663889	346	-60	270		Assays not returned
22LRAC390	474085	6663889	350	-60	270		Assays not returned
22LRAC391	474122	6663891	349	-60	270		Assays not returned
22LRAC392	474162	6663887	349	-60	270		Assays not returned
22LRAC393	474200	6663894	348	-60	270		Assays not returned
22LRAC394	474241	6663894	351	-60	270		Assays not returned
22LRAC395	474283	6663891	351	-60	270		Assays not returned
22LRAC396	473442	6663564	349	-60	270		Assays not returned
22LRAC397	473482	6663567	347	-60	270		Assays not returned
22LRAC398	473520	6663568	348	-60	270		Assays not returned
22LRAC399	473562	6663565	347	-60	270		Assays not returned
22LRAC400	473602	6663568	361	-60	270		Assays not returned
22LRAC401	473644	6663567	348	-60	270		Assays not returned
22LRAC402	473682	6663570	347	-60	270		Assays not returned
22LRAC403	473724	6663570	347	-60	270		Assays not returned

22LRAC404	473764	6663570	358	-60	270	Assays not returned
22LRAC405	473801	6663569	342	-60	270	Assays not returned
22LRAC406	473844	6663567	347	-60	270	Assays not returned
22LRAC407	473882	6663570	345	-60	270	Assays not returned
22LRAC408	473922	6663570	352	-60	270	Assays not returned
22LRAC409	473962	6663570	351	-60	270	Assays not returned
22LRAC410	474000	6663569	346	-60	270	Assays not returned
22LRAC411	474042	6663572	352	-60	270	Assays not returned
22LRAC412	474081	6663570	348	-60	270	Assays not returned
22LRAC413	474122	6663569	349	-60	270	Assays not returned
22LRAC414	474164	6663569	347	-60	270	Assays not returned
22LRAC415	474202	6663569	343	-60	270	Assays not returned
22LRAC416	474242	6663571	345	-60	270	Assays not returned
22LRAC417	474281	6663568	348	-60	270	Assays not returned

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent 	 E79 Gold has recently undertaken drilling activities within the Pinjin project by aircore drilling. Recent sampling undertaken by E79 Gold provides samples that are carried out to industry standard and include QAQC standards. E79 Gold's recent aircore drilling is sampled into 4m composite intervals via a sample spear, producing a sample of approximately 2kg. Samples are selected to weigh less than 3kg to ensure total sample inclusion at the pulverisation stage. All samples are crushed, dried and pulverised to a nominal 90% passing 75µm to produce a 25g sub sample for analysis by AR/MS.

Criteria	JORC Code explanation	Commentary			
	sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.				
Drilling techniques	 Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Aircore drilling to blade refusal was completed using a bit size of 100mm diameter. 			
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 AC samples are checked visually. Comments recorded for samples with low recovery. 			
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged 	 All holes were logged in full and logged for colour, weathering, grain size, minerals, geology and alteration. 			
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling 	 4m composite samples combined from individual 1m sample piles to achieve approximately 2kg of sample. Sampling was undertaken using a sample spear or scoop. This sampling regime is considered appropriate for early-stage exploration drilling. 			

Criteria	JORC Code explanation	Commentary		
	 Whether sample sizes are appropriate to the grain size of the material being sampled. 			
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. 	 Samples will be assayed using an aqua-regia digest followed by analysis of gold by ICPMS with lower detection limit of 1ppb Au. 48 multi-elements analysed by ICPMS and include; Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr QAQC samples were inserted at a frequency of 7 samples (i.e., standards, blanks, dups) per 100 samples. 		
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intercepts are verified by staff and consultant geologists No Twinned holes were used Data is logged onto excel spreadsheets and added to an external database 		
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Hole collar locations were recorded with a handheld GPS in MGA94 Zone 51S. RL was also recorded with handheld GPS but accuracy is variable. 		
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill spacing is 40m along lines and ~160m between lines. This drilling is considered early- stage exploration drilling and is not suitable for JORC compliant Resource Estimation. 1m sample piles were composited over 4m. 		
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is	 Drill lines were completed perpendicular to the trend of the main geological units. There is no known bias 		

Criteria	JORC Code explanation	Commentary
	 known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	between drilling orientation and key mineralised structures.
Sample security	The measures taken to ensure sample security.	 Samples were stored on site and taken directly to the laboratory using a third-party contractor.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No audits or reviews have been undertaken.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Drilling is located on tenements E31/1056, E31/1082 and E31/999. E31/1056, E31/1082 and E31/1007 are controlled by E79 Gold Mines Limited. Exploration Lease E31/1056 is granted and held until 2024 and renewable for a further 2 years. Exploration Lease E31/1082 is granted and held until 2025 and renewable for a further 2 years. Exploration Lease E31/999 is granted and held until 2022 and renewable for a further 2 years. Exploration Lease E31/999 is granted and held until 2022 and renewable for a further 2 years All production is subject to a Western Australian state government Net Smelter Return ("NSR") royalty of 2.5%. There is one registered Aboriginal Heritage Sites (ID:19142) over the tenement and no pastoral compensation agreements over the tenements.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 There have been many generations of soil sampling, auger and follow up RAB, AC and RC drilling dating back to the 1970's, exploring for base metals and gold. Gold in paleochannel sands was explored in the early 1980's by Uranerz Australia Pty

Criteria	JORC Code explanation	Commentary
		Ltd in a joint venture with BHP Minerals. In the late 1980's gold focussed explorers active in and around various parts of the Laverton South Project area included Aberfoyle Resources, Newcrest Mining, Capricorn Resources, Arimco, Barranco Resources, Pacmin, Gutnick Resources, Sons of Gwalia, Saracen Mines, Legacy Iron Ore, Hawthorn Resources, Ausgold Exploration, Renaissance Minerals and Raven Resources. In 2004, Newmont Asia Pacific commenced acquiring tenements through tenement applications and JV negotiations to search for the primary source of the paleochannel mineralisation previously identified by BHP/UAL. Detailed gravity and aeromagnetic surveys, geological interpretation, prospectivity analysis, aircore drilling and diamond drilling led to the identification of bedrock gold mineralisation. St Barbara Limited commenced acquiring tenements in the area from 2012, completing desk top studies, open file drill hole data compilation, reconnaissance field trips, historic drill spoil sampling, multi-element pathfinder analysis, heritage surveys, AEM surveys, target generation and aircore drilling.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Laverton South Project is located within the Eastern Goldfields Superterrane of the Archean Yilgarn Craton in the southern extensions of the LTZ, a 250 km long and laterally extensive significant gold bearing structure. Basement geology from end of hole drill chips is a mixture of granite, mica schist, basalt, black shale, dolerite and banded iron
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill	• See Table 1 and Figure 1 which show all drilling completed to date at Target 3.

	holes:	
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No data aggregate methods were undertaken. Significant intercepts are those >0.05 g/t.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	 Drilling was designed to intersect mineralisation at right angles
Diagrams Balanced reporting	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. Where comprehensive reporting 	 Appropriate maps are included within the body of this report to show location of drilling and results. See Table 1 and Figure 1 which

Criteria	JORC Code explanation	Commentary
	of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	show all drilling referred to in this report.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Relevant geological observations are included in this report.
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further AC drilling programs planned.