

7 September 2023

Aircore Drilling Intersects Multiple Thick Anomalous Zones at Target 4, Laverton South Gold Project

New follow-up drilling targets identified from large-scale aircore programs at Target 3 and Target 4

- Multiple thick zones of anomalism intersected within sheared ultramafics by recent aircore drilling, with assays including:
 - 12m @ 1.12g/t Au, including
 4m at 1.79g/t Au
- At Target 3, aircore drilling intersected 8m @ 0.75g/t Au in the far east of the system, establishing a new target for follow-up drilling
- Follow-up RC drilling to commence in September focusing on drilling below these significant intercepts

West Australian-based explorer E79 Gold Mines Limited (**ASX: E79**) ('E79 Gold' or 'the Company') is pleased to report assay results from recent Aircore (AC) drilling at Target 3 and Target 4, within its Laverton South Gold Project in Western Australia.

E79 Gold CEO, Ned Summerhayes, said: "The large aircore program was focused on Target 3 and Target 4, with assay results delivering compelling targets for follow-up drilling. The best result at Target 4 was 12m @ 1.12g/t Au, including 4m at 1.79g/t Au, on a drill line that also returned 11m @ 0.17g/t Au and 7m @ 0.11g/t Au. The next adjacent drill lines, which lie 200m to the north and south, also returned anomalous gold. Target 4 lies next to the Pinjin Fault, which hosts a number of historical and recent open pit gold mines, with these aircore results directing our follow-up drilling towards more prospective parts of the system.

"At Target 3, we intersected gold anomalism at the eastern end of a drill line, providing a new target for follow-up exploration. This anomalism sits over a magnetic high unit which is known to host thick high-grade mineralisation at Kirgella Gift, 6km along strike. An RC rig is due back on site in September to test below these anomalous zones."

ASX Code: E79

Shares on issue: 81M Market capitalisation: 5.7M Cash: \$4.5M (30 June 2023) ABN 34 124 782 038

Head Office

Level 1, 168 Stirling Hwy Nedlands, Western Australia 6009 T: +61 8 9287 7625 E: info@e79gold.com.au W: e79gold.com.au

Laverton South Project

Pinjin (100%) and Lake Yindana (100%)

The Laverton South Project, with an area of 272km², covers a southern portion of the Laverton Tectonic Zone ('LTZ') approximately 130km east-northeast of Kalgoorlie, within the major gold producing Archean Yilgarn Craton of Western Australia.

Figure 1. Tenement location map of Pinjin Project with recently drilled targets.

Pinjin (E28/2283, E28/2284, E28/2375, E31/0999, E31/1005, E31/1007, E31/1056, E31/1082) E79 100%

E79 Gold recently completed 82 aircore holes for 5,609m at Target 4 (see Figure 2) and 111 aircore drill-holes for 9,304m at Target 3 (Figure 4).

The aircore drilling at Target 4 (82 aircore holes for 5,609m) was designed to in-fill the wide spaced regional lines to 200m line spacing. Target 4 sits on the Pinjin Fault, which marks the boundary between the Linden and Edjudina geological domains. The Pinjin Fault is mineralised for over 30km and contains a number of historical and recent open pits.

Figure 2. Map of aircore drilling at Target 4, holes coloured by Max Au

Significant results from Target 4 include:

- 11m @ 0.17g/t Au from 64m (23LRAC160)
- 4m @ 0.11g/t Au from 68m (23LRAC161)
- 12m @ 1.12g/t Au from 68m (23LRAC163), including:
 - o 4m @ 1.79g/t Au from 72m

- 4m @ 0.14g/t Au from 56m (23LRAC166)
- 7m @ 0.11g/t Au from 64m (23LRAC169)
- 8m @ 0.32g/t Au from 80m (23LRAC141)
- 1m @ 0.39g/t Au from 47m (23LRAC188) (end of hole)

Results show that drill line 6686400mN, with drill holes 23LRAC160 to 23LRAC169, has multiple thick zones of anomalous gold over a 360m wide area (refer to Figure 3), which covers a subtle demagnetised zone of the Pinjin Fault. Previous drilling by E79 Gold and former owner St Barbara shows anomalous gold in the adjacent drill lines, which are 200m to the north and south¹.

In Hole 23LRAC163, an intercept of 12m @ 1.12g/t Au was returned within an ultramafic schist, in a similar stratigraphic position to 23LRAC141 (8m @ 0.32g/t Au) located 400m to the south-east. Deeper follow-up drilling will focus on this prospective stratigraphic position.

Figure 3. Target 4 Cross-section showing highest grades in ultramafic schist

Within the aircore drilling at Target 3, hole 23LRAC085 intersected 8m @ 0.75g/t Au from 84m in the east of the project area. Previous drilling by the Company intersected 18m @ 0.15g/t Au (22LRAC246)² in the same stratigraphic position in the adjacent line to the north.

¹ Refer to E79 ASX Announcement 27 February 2023

² Refer to E79 ASX Announcement 10 November 2022

This Eastern Zone forms a new exploration focus, as the intercepts sit within a magnetic-high unit that extends to Kirgella Gift (which sits outside E79 Gold's tenements 6km to the south-east), where previous drilling has intersected 33m @ 3.10g/t Au³.

This Eastern Zone will be targeted by the upcoming RC program commencing in September.

Figure 4. Map of aircore drilling at Target 3, holes coloured by Max Au

³ Refer to E79 Prospectus

Figure 5. Target 3 Cross-section

Planned and Recent Activities

E79 Gold is an active explorer with upcoming activities including:

- > September 2023 Follow-up RC drilling at Target 3 and Target 4, Pinjin Project
- > October 2023 Commence AC drilling at Lake Yindana
- > November 2023 Commence large-scale AC drilling at Murchison Project
- > November 2023 Present at RRS Summer Series, Sydney 14th, Melbourne 16th

Our motto: Money in the ground.

Yours sincerely,

E

Ned Summerhayes

Chief Executive Officer

The information in this report that relates to Exploration Results is based on information compiled by Mr Ned Summerhayes, a Competent Person who is a member of the Australian Institute of Geoscientists. Mr Summerhayes is a full-time employee, a shareholder and an option holder of the Company. Mr Summerhayes has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Summerhayes consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Previously Reported Information: The information in this report that references previously reported exploration results is extracted from the Company's ASX market announcements released on the date noted in the body of the text where that reference appears. The previous market announcements are available to view on the Company's website or on the ASX website (www.asx.com.au). The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Authorised for release by the CEO of E79 Gold Mines Limited.

For Further Information, please contact:

E79 Gold Mines Limited	Media Enquiries:
Phone: 08 9287 7625	Nicholas Read – Read Corporate
<u>info@e79gold.com.au</u>	Phone: 08 9388 1474

ABOUT E79 GOLD MINES LIMITED (ASX: E79)

E79 Gold's Projects comprise ~861km² of highly prospective ground within the LTZ and the Murchison Goldfields, both of which are endowed with >30 million ounces of gold (Figure 6). The Laverton South Project is located 130km east-northeast of Kalgoorlie while the Jungar Flats (Murchison) Project is located 70km west of Meekatharra. The Projects are a mix of early stage greenfields exploration and walk-up drill targets.

Laverton South Project

Lake Yindana (E28/2659, E28/3239) 100%

Lake Yindana covers an area of 132km² in the southern portion of the +30Moz gold endowed Laverton Tectonic Zone (LTZ), approximately 130km east-northeast of Kalgoorlie (Figure 6).

The Project consists of a large untested greenstone belt, defined by corroborating magnetics and gravity data, as well as historic drilling, which runs for over 25km through the tenement.

Lithologies from the historic drilling show gabbro, ultramafic and granitic gneiss, with the latter being a similar host rock to Ramelius Resources' Rebecca deposit, located 9km to the north-west.

In addition, interpretation of recent gravity data suggests the presence of intrusion-related targets within the greenstone stratigraphy.

E79 Gold believes that the largest deposits are typically found early in new exploration search spaces, and the recently identified greenstone belt at Lake Yindana represents an exciting 'first mover' opportunity.

Pinjin (E28/2283, E28/2284, E28/2375, E31/0999, E31/1005, E31/1007, E31/1056, E31/1082) E79 100%

The Pinjin Project covers 139km2 of prospective ground within the Laverton South Project. Refer to page 2 of this announcement for details of the Pinjin Project.

Murchison Project

Jungar Flats

(E51/1975, E51/1803, E51/1848, E20/0926, E51/2122) 100%, (E51/1681) 100% of Mineral Rights (excluding iron ore and ferrous minerals)

The Jungar Flats Project, in the North Murchison region, is located 70km west of Meekatharra and 45km north-northeast of the 2.8Moz Big Bell gold deposit. The

Project tenure covers an area of 541km², contains approximately 90km of strike of the highly prospective Big Bell Shear, and straddles a narrow north-south trending greenstone belt.

The area is prospective for gold, base metals, lithium, iron ore and PGE's.

Figure 6: Yilgarn Craton Greenstones showing Project locations.

Table 1. Aircore drilling completed at Target 3 (results showing >0.1 g/t Au, 4m of internal dilution)

Hole ID	East	North	RL	Depth	Azi	Dip	From	То	Intercept
23LRAC112	470256	6685006	371	79	90	-60			No Significant Intersection
23LRAC113	470217	6685008	364	83	90	-60			No Significant Intersection
23LRAC114	470183	6685008	363	74	90	-60			No Significant Intersection
23LRAC115	470142	6685005	363	71	90	-60			No Significant Intersection
23LRAC116	470102	6685006	365	86	90	-60			No Significant Intersection
23LRAC117	470056	6685007	367	87	90	-60			No Significant Intersection
23LRAC118	470019	6685007	367	86	90	-60			No Significant Intersection
23LRAC119	469979	6685002	368	72	90	-60			No Significant Intersection
23LRAC120	469937	6685004	370	77	90	-60			No Significant Intersection
23LRAC121	469899	6685008	369	73	90	-60			No Significant Intersection
23LRAC122	469857	6685007	368	64	90	-60			No Significant Intersection
23LRAC123	469818	6685007	370	56	90	-60			No Significant Intersection
23LRAC124	469777	6685005	370	65	90	-60	56	60	4m @ 0.20 g/t Au
23LRAC125	469736	6685005	368	88	90	-60			No Significant Intersection
23LRAC126	469699	6685006	370	72	90	-60			No Significant Intersection
23LRAC127	469662	6685004	373	72	90	-60			No Significant Intersection
23LRAC128	469618	6685003	368	73	90	-60			No Significant Intersection
23LRAC129	469580	6685003	366	53	90	-60			No Significant Intersection
23LRAC130	469537	6685004	365	53	90	-60			No Significant Intersection
23LRAC131	469503	6685003	369	39	90	-60			No Significant Intersection
23LRAC132	469453	6685006	370	33	90	-60			No Significant Intersection
23LRAC133	469325	6685804	364	70	90	-60			No Significant Intersection
23LRAC134	469288	6685807	368	63	90	-60			No Significant Intersection
23LRAC135	469249	6685801	371	72	90	-60			No Significant Intersection
23LRAC136	469210	6685799	367	66	90	-60			No Significant Intersection
23LRAC137	469168	6685802	368	82	90	-60			No Significant Intersection
23LRAC138	469567	6686003	364	62	90	-60			No Significant Intersection
23LRAC139	469526	6685997	369	62	90	-60			No Significant Intersection
23LRAC140	469488	6685995	372	59	90	-60			No Significant Intersection
23LRAC141	469446	6685998	374	95	90	-60	80	88	8m @ 0.32 g/t Au
23LRAC142	469409	6685998	375	82	90	-60			No Significant Intersection
23LRAC143	469369	6685997	367	71	90	-60			No Significant Intersection
23LRAC144	469329	6686002	368	71	90	-60			No Significant Intersection
23LRAC145	469290	6686001	366	73	90	-60	60	64	4m @ 0.12 g/t Au
23LRAC146	469249	6686000	366	74	90	-60			No Significant Intersection
23LRAC147	469208	6686001	370	88	90	-60			No Significant Intersection
23LRAC148	469168	6686002	363	89	90	-60			No Significant Intersection
23LRAC149	469127	6685998	372	86	90	-60			No Significant Intersection
23LRAC150	469093	6686004	366	74	90	-60			No Significant Intersection
23LRAC151	469168	6686208	366	75	90	-60			No Significant Intersection
23LRAC152	469127	6686201	367	80	90	-60			No Significant Intersection

23LRAC153	469087	6686203	364	66	90	-60			No Significant Intersection
23LRAC154	469050	6686202	367	98	90	-60			No Significant Intersection
23LRAC155	469011	6686205	370	97	90	-60			No Significant Intersection
23LRAC156	469566	6686398	364	80	90	-60			No Significant Intersection
23LRAC157	469528	6686402	364	74	90	-60			No Significant Intersection
23LRAC158	469489	6686399	365	80	90	-60			No Significant Intersection
23LRAC159	469447	6686403	364	79	90	-60			No Significant Intersection
23LRAC160	469411	6686400	366	78	90	-60	64	75	11m @ 0.17 g/t Au
23LRAC161	469373	6686402	366	77	90	-60	68	72	4m @ 0.11 g/t Au
23LRAC162	469330	6686396	366	85	90	-60			No Significant Intersection
23LRAC163	469287	6686400	367	95	90	-60	68	80	12m @ 1.12 g/t Au
23LRAC164	469246	6686398	372	86	90	-60			No Significant Intersection
23LRAC165	469212	6686397	367	80	90	-60			No Significant Intersection
23LRAC166	469170	6686399	365	74	90	-60	56	60	4m @ 0.14 g/t Au
23LRAC167	469131	6686399	365	68	90	-60			No Significant Intersection
23LRAC168	469089	6686396	363	59	90	-60			No Significant Intersection
23LRAC169	469049	6686399	363	74	90	-60	64	71	7m @ 0.11 g/t Au
23LRAC170	469010	6686400	366	80	90	-60			No Significant Intersection
23LRAC171	469208	6688001	374	95	90	-60			No Significant Intersection
23LRAC172	469162	6687993	370	56	90	-60			No Significant Intersection
23LRAC173	469126	6687999	370	43	90	-60			No Significant Intersection
23LRAC174	469091	6687997	369	61	90	-60			No Significant Intersection
23LRAC175	469048	6687998	368	70	90	-60			No Significant Intersection
23LRAC176	469009	6687995	369	77	90	-60			No Significant Intersection
23LRAC177	468970	6687999	370	57	90	-60			No Significant Intersection
23LRAC178	468928	6687996	369	43	90	-60			No Significant Intersection
23LRAC179	468889	6687998	373	41	90	-60			No Significant Intersection
23LRAC180	468849	6688000	367	60	90	-60			No Significant Intersection
23LRAC181	468808	6688001	369	59	90	-60			No Significant Intersection
23LRAC182	468771	6687999	370	52	90	-60			No Significant Intersection
23LRAC183	468729	6688000	371	50	90	-60			No Significant Intersection
23LRAC184	468689	6687998	371	62	90	-60			No Significant Intersection
23LRAC185	468649	6687993	374	58	90	-60			No Significant Intersection
23LRAC186	468608	6687996	373	50	90	-60			No Significant Intersection
23LRAC187	468571	6688001	370	61	90	-60			No Significant Intersection
23LRAC188	468535	6688001	375	48	90	-60	47	48	1m @ 0.39 g/t Au
23LRAC189	468490	6688003	374	25	90	-60			No Significant Intersection
23LRAC190	468448	6688000	376	30	90	-60			No Significant Intersection
23LRAC191	468409	6688000	379	42	90	-60			No Significant Intersection
23LRAC192	468366	6688000	374	36	90	-60			No Significant Intersection
23LRAC193	468335	6687999	380	53	90	-60			No Significant Intersection

Table 2. Aircore drilling completed at Target 4 (results showing >0.1 g/t Au, 4m of internal dilution)

Hole ID	East	North	RL	Depth	Azi	Dip	From	То	Intercept
23LRAC001	474049	6664541	355	94	270	-60			No Significant Intersection
23LRAC002	474084	6664540	353	96	270	-60			No Significant Intersection
23LRAC003	474126	6664538	354	112	270	-60	68	72	4m @ 0.18 g/t Au
23LRAC004	474169	6664540	360	103	270	-60			No Significant Intersection
23LRAC005	474199	6664536	349	74	270	-60			No Significant Intersection
23LRAC006	474231	6664537	351	101	270	-60			No Significant Intersection
23LRAC007	474286	6664538	365	65	270	-60			No Significant Intersection
23LRAC008	473886	6664381	353	68	270	-60			No Significant Intersection
23LRAC009	473920	6664381	347	65	270	-60			No Significant Intersection
23LRAC010	473965	6664380	357	54	270	-60			No Significant Intersection
23LRAC011	474000	6664385	356	80	270	-60			No Significant Intersection
23LRAC012	474029	6664381	350	63	270	-60			No Significant Intersection
23LRAC013	473884	6662965	350	83	270	-60			No Significant Intersection
23LRAC014	473914	6662968	354	95	270	-60	40	44	4m @ 0.41 g/t Au
23LRAC015	473963	6662973	350	110	270	-60			No Significant Intersection
23LRAC016	474001	6662968	347	118	270	-60			No Significant Intersection
23LRAC017	474038	6662970	353	115	270	-60			No Significant Intersection
23LRAC018	474074	6662973	343	127	270	-60			No Significant Intersection
23LRAC019	474116	6662967	345	91	270	-60			No Significant Intersection
23LRAC020	474166	6662977	345	76	270	-60			No Significant Intersection
23LRAC021	474205	6662970	342	53	270	-60			No Significant Intersection
23LRAC022	474238	6662964	342	56	270	-60			No Significant Intersection
23LRAC023	474278	6662963	345	55	270	-60	54	55	1m@ 0.12 g/t Au
23LRAC024	473883	6663291	348	53	270	-60			No Significant Intersection
23LRAC025	473933	6663294	351	44	270	-60			No Significant Intersection
23LRAC026	473978	6663293	347	48	270	-60			No Significant Intersection
23LRAC027	474009	6663290	352	26	270	-60			No Significant Intersection
23LRAC028	474052	6663291	351	71	270	-60			No Significant Intersection
23LRAC029	474088	6663289	347	77	270	-60			No Significant Intersection
23LRAC030	474129	6663288	349	23	270	-60			No Significant Intersection
23LRAC031	474171	6663294	350	69	270	-60			No Significant Intersection
23LRAC032	474210	6663292	347	78	270	-60			No Significant Intersection
23LRAC033	474254	6663292	351	65	270	-60			No Significant Intersection
23LRAC034	474294	6663290	346	73	270	-60			No Significant Intersection
23LRAC035	473953	6663446	347	41	270	-60			No Significant Intersection
23LRAC036	473990	6663449	348	37	270	-60			No Significant Intersection
23LRAC037	474033	6663449	355	38	270	-60			No Significant Intersection
23LRAC038	474073	6663447	353	44	270	-60			No Significant Intersection
23LRAC039	474113	6663448	352	35	270	-60			No Significant Intersection
23LRAC040	474154	6663444	351	47	270	-60			No Significant Intersection
23LRAC041	474045	6663751	347	62	270	-60			No Significant Intersection

231 BAC0/2	474084	6663746	252	85	270	-60			No Significant Intersection
23LRAC042	474084	6664378	347	113	270	-60			No Significant Intersection
23LRAC044	474128	6664389	349	107	270	-60			No Significant Intersection
231 RAC045	474164	6664386	353	62	270	-60			No Significant Intersection
23LRAC046	474201	6664387	352	59	270	-60			No Significant Intersection
231 RAC047	474201	6663747	252	1/	270	-60			No Significant Intersection
231040047	474125	6662747	222	14 65	270	-00			No Significant Intersection
23LRAC040	474105	6662749	252	74	270	-00			No Significant Intersection
23LRAC049	474204	0003748	357	74	270	-60			No Significant Intersection
23LRAC050	474242	6663748	348	//	270	-60			No Significant Intersection
23LRAC051	4/42/8	6663749	351	81	270	-60			No Significant Intersection
23LRAC052	474005	6664063	353	/6	270	-60			No Significant Intersection
23LRAC053	474039	6664060	351	83	270	-60			No Significant Intersection
23LRAC054	474082	6664066	352	89	270	-60			No Significant Intersection
23LRAC055	474125	6664068	354	98	270	-60			No Significant Intersection
23LRAC056	474165	6664065	351	108	270	-60	104	107	3m @ 0.42 g/t Au
23LRAC057	474200	6664062	349	107	270	-60	106	107	1m @ 0.50 g/t Au
23LRAC058	474244	6664066	356	101	270	-60	76	84	8m @ 0.19 g/t Au
23LRAC059	474278	6664069	357	104	270	-60	92	96	4m @ 0.15 g/t Au
23LRAC060	474239	6664383	355	108	270	-60			No Significant Intersection
23LRAC061	474284	6664380	352	104	270	-60			No Significant Intersection
23LRAC062	473965	6664381	350	77	270	-60	44	48	4m @ 0.67 g/t Au
23LRAC063	473345	6665648	349	101	270	-60	56	60	4m @ 0.16 g/t Au
23LRAC064	473385	6665650	349	95	270	-60	72	76	4m @ 0.12 g/t Au
23LRAC065	473430	6665653	351	107	270	-60			No Significant Intersection
23LRAC066	473462	6665652	349	103	270	-60			No Significant Intersection
23LRAC067	473511	6665646	347	104	270	-60			No Significant Intersection
23LRAC068	473547	6665651	351	107	270	-60			No Significant Intersection
23LRAC069	473587	6665651	348	101	270	-60	88	101	13m @ 0.13 g/t Au
23LRAC070	473629	6665651	353	99	270	-60	92	95	3m @ 0.59 g/t Au
23LRAC071	473671	6665650	353	84	270	-60	60	64	4m @ 0.11 g/t Au
23I RAC072	473709	6665651	354	74	270	-60		-	No Significant Intersection
23LRAC073	473745	6665650	351	79	270	-60	72	76	4m @ 0.47 g/t Au
23I RAC074	473785	6665651	348	78	270	-60			No Significant Intersection
231 RAC075	473824	6665652	351	77	270	-60	68	72	4m @ 0.12 g/t Au
231 RAC076	473860	6665652	355	89	270	-60	68	72	4m @ 0.22 g/t Au
231 RAC077	473897	6665652	353	83	270	-60	64	68	4m @ 0 38 g/t Au
231 RAC078	473037	6665652	353	88	270	-60	04	00	No Significant Intersection
23LRAC070	473081	6665652	356	<u>م</u>	270	-60			No Significant Intersection
231040075	473301	6665654	250	111	270	60			No Significant Intersection
23LRAC000	474010	6665652	222	104	270	-00			No Significant Intersection
	474002	6665652	222	104	270	-00			No Significant Intersection
Z3LKACU82	474100	0005052	353	92	270	-60	<i>C</i> 1	<u> </u>	
23LRAC083	474136	0005051	358	95	270	-60	64	68	4m @ 0.12 g/t Au
							80	84	4m @ 0.12 g/t Au
23LRAC084	474179	6665652	353	89	270	-60	68	72	4m @ 0.16 g/t Au

23LRAC085	474222	6665652	353	93	270	-60	84	92	8m @ 0.75 g/t Au
23LRAC086	474262	6665650	357	84	270	-60			No Significant Intersection
23LRAC087	473283	6665968	348	98	270	-60			No Significant Intersection
23LRAC088	473323	6665967	348	101	270	-60			No Significant Intersection
23LRAC089	473363	6665966	349	106	270	-60			No Significant Intersection
23LRAC090	473402	6665965	351	108	270	-60	88	92	4m @ 0.13 g/t Au
23LRAC091	473439	6665965	348	108	270	-60	64	68	4m @ 0.40 g/t Au
23LRAC092	473482	6665969	352	119	270	-60			No Significant Intersection
23LRAC093	473524	6665971	350	119	270	-60	12	16	4m @ 0.11 g/t Au
23LRAC094	473564	6665968	351	116	270	-60	80	84	4m @ 0.18 g/t Au
23LRAC095	473602	6665968	352	101	270	-60	100	101	1m @ 0.83 g/t Au
23LRAC096	473643	6665969	353	106	270	-60	105	106	1m @ 4.52 g/t Au
23LRAC097	473680	6665966	352	101	270	-60			No Significant Intersection
23LRAC098	473722	6665970	352	94	270	-60			No Significant Intersection
23LRAC099	473761	6665969	350	96	270	-60	80	84	4m @ 0.14 g/t Au
23LRAC100	473798	6665972	353	80	270	-60	79	80	1m @ 0.11 g/t Au
23LRAC101	473839	6665966	355	81	270	-60			No Significant Intersection
23LRAC102	473879	6665963	352	95	270	-60			No Significant Intersection
23LRAC103	473918	6665965	353	104	270	-60	68	72	4m @ 0.62 g/t Au
23LRAC104	473963	6665967	353	114	270	-60			No Significant Intersection
23LRAC105	474001	6665966	351	104	270	-60	64	68	4m @ 0.26 g/t Au
23LRAC106	474043	6665964	350	86	270	-60			No Significant Intersection
23LRAC107	474081	6665965	350	97	270	-60			No Significant Intersection
23LRAC108	474120	6665967	353	67	270	-60			No Significant Intersection
23LRAC109	474158	6665966	353	71	270	-60			No Significant Intersection
23LRAC110	474199	6665964	352	65	270	-60			No Significant Intersection
23LRAC111	474236	6665965	355	61	270	-60			No Significant Intersection

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	 E79 Gold has recently undertaken drilling activities within the Pinjin project by AC drilling. Recent sampling undertaken by E79 Gold provides samples that are carried out to industry standard and include QAQC standards. E79 Gold's recent aircore drilling is sampled into 4m

Criteria	JORC Code explanation	Commentary		
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	composite intervals via a sample spear, producing a sample of approximately 2kg. Samples are selected to weigh less than 3kg to ensure total sample inclusion at the pulverisation stage. All samples are crushed, dried and pulverised to a nominal 90% passing 75µm to produce a 25g sub sample for analysis by AR/MS.		
Drilling techniques	 Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Aircore drilling to blade refusal was completed using a bit size of 100mm diameter.		
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 AC samples are checked visually. Comments recorded for samples with low recovery. 		
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	All holes were logged in full and logged for colour, weathering, grain size, minerals, geology and alteration.		

Criteria	JORC Code explanation	Commentary		
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 4m composite samples combined from individual 1m sample piles to achieve approximately 2kg of sample. Sampling was undertaken using a sample spear or scoop. This sampling regime is considered appropriate for early-stage exploration drilling. 		
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. 	 Samples will be assayed using an aqua-regia digest followed by analysis of gold by ICPMS with lower detection limit of 1ppb Au. The bottom of hole sample is analysed for 48 multi- elements by ICPMS and include; Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr QAQC samples were inserted at a frequency of 7 samples (i.e., standards, blanks, dups) per 100 samples. 		
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intercepts are verified by staff and consultant geologists No Twinned holes were used Data is logged onto excel spreadsheets and added to an external database 		
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system 	 Hole collar locations were recorded with a handheld GPS in MGA94 Zone 51S. RL was also recorded with handheld GPS but accuracy is variable. 		

Criteria	JORC Code explanation	Commentary
	used. Quality and adequacy of topographic control. 	
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill spacing is 40m along lines and ~150m between lines (200m at Target 4). This drilling is considered early- stage exploration drilling and is not suitable for JORC compliant Resource Estimation.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill lines were completed perpendicular to the trend of the main geological units. There is no known bias between drilling orientation and key mineralised structures.
Sample security	The measures taken to ensure sample security.	• Samples were stored on site and taken directly to the laboratory using a third-party contractor.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been undertaken.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Drilling is located on tenements E31/1056, E31/1082 and E31/999. E31/1056, E31/1082 and E31/0999 are controlled by E79 Gold Mines Limited. Exploration Lease E31/1056 is granted and held until 2024 and renewable for a further 2 years. Exploration Lease E31/1082 is granted and held until 2025 and renewable for a further 2 years. Exploration Lease E31/1082 is granted and held until 2025 and renewable for a further 2 years. Exploration Lease E31/999 is granted and held until 2024 and renewable for a further 2 years All production is subject to a Western Australian state

Criteria	JORC Code explanation	Commentary
		 government Net Smelter Return ("NSR") royalty of 2.5%. There are two registered Aboriginal Heritage Sites (ID:19142 and ID:2708) over the tenements. 19142 covers parts of E31/1056 and 2708 covers parts of E31/1082 and E31/1005. Neither of these heritage sites are impacted by the drilling programs. There are no pastoral compensation agreements over the tenements.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 There have been many generations of soil sampling, auger and follow up RAB, AC and RC drilling dating back to the 1970's, exploring for base metals and gold. Gold in paleochannel sands was explored in the early 1980's by Uranerz Australia Pty Ltd in a joint venture with BHP Minerals. In the late 1980's gold focussed explorers active in and around various parts of the Laverton South Project area included Aberfoyle Resources, Newcrest Mining, Capricorn Resources, Arimco, Barranco Resources, Sons of Gwalia, Saracen Mines, Legacy Iron Ore, Hawthorn Resources, Ausgold Exploration, Renaissance Minerals and Raven Resources. In 2004, Newmont Asia Pacific commenced acquiring tenements through tenement applications to search for the primary source of the paleochannel mineralisation previously identified by BHP/UAL. Detailed gravity and aeromagnetic surveys, geological interpretation, prospectivity analysis, aircore drilling and diamond drilling led to the identification of bedrock gold mineralisation. St Barbara Limited commenced acquiring tenements in the area from 2012, completing desk top studies, open file drill hole data compilation, reconnaissance field trips, historic drill spoil

Criteria	JORC Code explanation	Commentary
		sampling, multi-element pathfinder analysis, heritage surveys, AEM surveys, target generation and aircore drilling.
Geology	Deposit type, geological setting and style of mineralisation.	 The Laverton South Project is located within the Eastern Goldfields Superterrane of the Archean Yilgarn Craton in the southern extensions of the LTZ, a 250 km long and laterally extensive significant gold bearing structure. Basement geology from end of hole drill chips is a mixture of granite, mica schist, basalt, black shale, dolerite and banded iron
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case 	 See Tables 1 and 2, and Figures 2 and 4, which show AC drilling details.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 No data aggregate methods were undertaken. Significant intercepts are those >0.10 g/t.

Criteria	JORC Code explanation	Commentary
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	 Drilling was designed to intersect mineralisation at right angles
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate maps are included within the body of this report to show location of drilling and results.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 See Table 1 and Figure 2 which show all drilling referred to in this report.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Relevant geological observations are included in this report.
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further drilling programs planned.