30 October 2024

Mountain Home Copper-Gold Project, NT – Exploration Update

Key environmental approval received, paving way for drill programs in 2025; Project prospectivity enhanced by ongoing work programs

- Mine Management Plan Exploration approved for prospective areas within tenement EL32470. This approval is crucial to advancing heritage approvals and ground disturbing activities, ahead of planned drill activities in 2025.
- Field reconnaissance completed in early October targeting extensions to the Mountain Home gossan, where previous reported rock chips returned assays of up to 45.5% Cu and up to 11.75 g/t Au¹.
- Key regional targets were also evaluated during the reconnaissance program, with results pending.
- New copper targets identified within tenements recently applied for by E79 Gold, with historic reporting of up to 1.17% Cu² from rock chip sampling.
- The Mountain Home Project lies within the North Australian Zinc Belt³, a globally significant zone of zinc-lead-copper mineralisation, with potential for multiple styles of mineralisation.
- E79 Gold considers the Mountain Home project to have potential for a copper-gold mineral system with significant scale and following receipt of results from the recent reconnaissance trip, will plan additional field programs to evaluate this potential and advance identified regional targets.

ASX Code: E79

Shares on issue: 81M Market capitalisation: \$3M Cash: \$2.1M (30 June 2024) ABN 34 124 782 038

Head Office

168 Stirling Hwy Nedlands, Western Australia 6009 T: +61 8 9287 7625 E: info@e79gold.com.au W: e79gold.com.au

¹ See E79 Gold Mines ASX Announcement dated 26 July 2024

² Refer to NTGS Gemis report CR1997-0219

³ Huston et al, 2023, Zinc on the edge, Mineralium Deposita 58 (707-729)

West Australian-based explorer E79 Gold Mines Limited (**ASX: E79**) ('E79 Gold' or 'the Company') is pleased to provide an update on recent exploration activities at the Mountain Home Copper-Gold Project, located in the Northern Territory, where work programs continue to advance ahead of drilling planned for 2025.

E79 Gold CEO, Ned Summerhayes, said: "Since the outstanding rock chip results returned from our initial field trip to the Mountain Home Project, where assays of up to 45.5% Cu and 11.75 g/t Au were returned from the 1km long mapped outcropping gossan (the MH gossan), we have been working to put the results into a regional geological framework.

"Collectively, the sample assay results from both historic work and E79 Gold's initial field trip, combined with recent field observations, confirm the potential for the broader region to host several styles of deposit, enhancing the overall prospectivity of the Mountain Home Project.

"A follow-up field trip was recently undertaken with soil samples and rock chips acquired in parallel with mapping, with the aim of extending the MH gossan and evaluating regional exploration targets.

"Results are pending and expected over the next four weeks. As part of this regional work, a zone of copper anomalism located in one of the tenement applications was identified for immediate follow-up upon granting of the tenement."

Northern Territory Project

Mountain Home (EL32470 – NT Minerals Option), EL33886 and EL33887 (both under application – 100% E79 Gold)

E79 Gold controls an area of 868km² within the highly prolific McArthur Basin in the Northern Territory. The Project covers inliers of prospective lithology of the McArthur Basin, within the younger Carpentaria Basin.

A recent follow-up field trip, completed in early October, identified the prospective MH gossan occurs as an en-echelon array of steeply dipping units, within a host rock of medium grained dolostone. The dolostone unit is up to 400m wide and trends north-south while the MH gossan is oblique to this stratigraphy with a NW-SE orientation.

This dolostone unit creates a prospective host corridor for potential mineralisation development that remains open to the north and south and is bounded by limestone in the east and west.

The contact between the target dolostone and the bounding limestone is marked by outcropping quartz cemented breccias, mapped for 2km north of the MH gossan (see Figure 1).

During the recent field trip, 80 soil samples were taken, covering various parts of the prospective corridor and other more regional targets, while 17 rock chips were taken across outcropping lithologies, mostly north of the MH gossan.

The MH gossan is mineralised, with previous reported rock chip analysis returning high-grade copper (Cu) and gold (Au) values and, together with the prospective host dolostone unit, represent a compelling drill target with size, scale and known surface mineralisation including⁴:

- MHR0004 **28.9% Cu, 0.16 g/t Au**
- MHR0008 **0.11% Cu, 11.75 g/t Au**
- MHR0009 22.0% Cu, 0.45 g/t Au
- MHR0010 **45.5% Cu, 0.08 g/t Au**
- MHR0011 38.4% Cu, 0.23 g/t Au
- MHR0012 24.9% Cu, 1.33 g/t Au
- MHR0013 39.8% Cu, 1.72 g/t Au
- MHR0014 30.0% Cu, 0.29 g/t Au

Mineralisation within the target corridor is interpreted by the Company to be caused by leakage of enriched fluids sourced from either within the McArthur Basin or from a deeper crustal source along regional conduit faults into the prospective units, where reactions between hot, acidic metals-enriched fluids and the carbonate-bearing host rock (dolostone), create increased permeability and result in precipitation of copper sulphides.

The iron-rich layers within the dolostone are particularly attractive units for the deposition of gold and copper mineralisation, as demonstrated by the high copper and gold grades in rock chip samples taken by the Company during the initial reconnaissance field visit in June this year.

This type of deposit style (SEDEX) is similar to the nearby McArthur River Mine, where the dissolution of the carbonate-bearing host rock allows extremely large amounts of fluid to pass through the rock with a reaction front of precipitating base metals, which is responsible for the large size of these styles of deposit.

⁴ See E79 Gold Mines ASX Announcement dated 26 July 2024

Figure 1: Map of the MH gossan with October field work sample locations.

While there is some indication of this style of deposit from elevated sulphur values in both rock chip samples and in the soil samples from the surrounding prospective dolostone host unit, evidence for potential fluid flow through the system, both zinc (Zn) and lead (Pb) values in both rock chips and soils are low.

The reported Cu-Au-Bi association from rock chip assay results is intriguing as it has similarities with the Cu-Au-Bi fluids described by Skirrow⁵ from the highly endowed Tennent Creek mineral field, located 400km to the south-west (see Figure 2).

Geoscience Australia research⁶ suggests a previously unrecognised gold mineralising event approximately 200 million years after the main mineralising event at Tennant Creek. This newly recognised gold event has been dated to 1660 Ma and corresponds to the age of a regional tectonic event interpreted by Geoscience Australia across Northern Australia.

The Tennant Creek copper-gold-bismuth mineralisation is also characteristic of the typical iron rich Tennant Creek Iron-Oxide-Copper-Gold (IOCG) deposits.

The copper, gold and enriched bismuth rocks at Mountain Home are found within iron-rich rocks exposed at surface, dramatically reducing the exploration costs to discover and evaluate the potential for these types of deposits compared to those elsewhere under deep cover sequences.

Figure 2: Map of Northern Australia mineral occurrences.

⁵ Skirrow RG, 1993, The genesis of gold-copper-bismuth deposits, Tennant Creek, Northern Territory. PhD thesis at the Australian National University.

⁶ Skirrow and Cross, 2018. Identification of a new gold event at Tennant Creek expands 'search space' for more discoveries, Geoscience Australia. Exploring for the Future publication

A new target with elevated copper in iron-rich rocks is located 22km east of the MH gossan.

Historic rock chips and regional magnetics show an iron-rich stratigraphic horizon continuing for ~12km within a separate basement inlier.

19 rock chips taken by BHP in 1996 returned copper grades of up to 1.17% Cu, with a main zone of >1,000ppm copper extending for over 600m. This prospective zone also shows elevated zinc (Zn) and cobalt (Co). See table 3 for results.⁷

This area and the 12km of iron-rich stratigraphy located along strike, sits wholly within the Company's new tenement applications, due to be approved in 2025, and represents an immediate exploration target to be field tested once tenure is granted.

Figure 3: Location map of the Mountain Home Project with recent soil sample locations, and new target area.

⁷ Refer to NTGS Gemis report CR1997-0219

Figure 4: Location map of the Mountain Home Project with the McArthur and Carpentaria Basins. Our motto: Money in the ground.

Yours sincerely,

-

Ned Summerhayes

Chief Executive Officer

The information in this report that relates to Exploration Results is based on information compiled by Mr Ned Summerhayes, a Competent Person who is a member of the Australian Institute of Geoscientists. Mr Summerhayes is a full-time employee, a shareholder and an option holder of the Company. Mr Summerhayes has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Summerhayes consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Previously Reported Information: The information in this report that references previously reported exploration results is extracted from the Company's ASX market announcements released on the date noted in the body of the text where that reference appears. The previous market announcements are available to view on the Company's website or on the ASX website (www.asx.com.au). The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

9

Authorised for release by the CEO of E79 Gold Mines Limited.

For Further Information, please contact:

E79 Gold Mines Limited	Media Enquiries:
Phone: 08 9287 7625	Nicholas Read – Read Corporate
<u>info@e79gold.com.au</u>	Phone: 08 9388 1474

ABOUT E79 GOLD MINES LIMITED (ASX: E79)

E79 Gold's Projects comprise ~1,838km² of highly prospective ground including within the McArthur Basin of the Northern Territory, which is the world's largest accumulation of Zn-Pb⁸ and is prospective for copper, gold and diamonds, and within the Laverton Tectonic Zone and Murchison Goldfields, both of which are endowed with >30 million ounces of gold and located within the Yilgarn Craton of Western Australia.

Figure 5: Map of E79 Gold's exploration projects.

⁸ Huston et al, 2023, Zinc on the edge, Mineralium Deposita 58 (707-729)

Table 1 – Rock chip sample locations

All samples in MGA_2020_53

Sample ID	East	North	RL	Comments	Mineral and %
MHR0017	676340	8098684	183	Malachite on subcropping gossan with boxwork limonite	Malachite 10%
MHR0018	676250	8099560	182	Quartz growth on quartz breccia outcrop	
MHR0019	676245	8099561	178	Malachite coating on iron rich rock, with limonite	Malachite 2%
MHR0020	676216	8099629	181	Quartz cemented breccia	
MHR0021	676208	8099659	180	Quartz growth on sedimentary breccia outcrop	
MHR0022	676150	8099780	179	Area of quartz vein and quartz breccia float	
MHR0023	676202	8099668	177	Medium grained dolostone, near cross cutting creek	
MHR0024	676185	8099439	178	Quartz breccia with minor malachite staining	Malachite 1%
MHR0025	676199	8099863	173	Area of abundant quartz breccia float with cm size quartz crystals	
MHR0026	676165	8099938	173	Bedded dolostone with amethyst crystals	
MHR0027	676043	8100199	176	Quartz cemented dolostone breccia	
MHR0028	676277	8100595	176	Carbonate cemented dolostone breccia	
MHR0029	676369	8100533	179	Quartz cemented breccia	
MHR0030	676309	8100622	177	Limestone with pale green clay zones	
MHR0031	676176	8101022	178	Dolostone and quartz outcrop	
MHR0032	676244	8100866	185	Quartz cemented breccia with limonite replacing pyrite	

Table 2 – Soil sample locations

All samples in MGA_2020_53

Sample ID	East	North	RL	Target
MHS0037	676031	8098955	184	Dolostone corridor
MHS0038	676070	8098953	183	Dolostone corridor
MHS0039	676112	8098951	183	Dolostone corridor
MHS0040	676153	8098953	181	Dolostone corridor
MHS0041	676195	8098952	178	Dolostone corridor
MHS0042	676230	8098953	178	Dolostone corridor
MHS0043	676273	8098951	178	Dolostone corridor
MHS0044	676312	8098954	179	Dolostone corridor
MHS0045	676357	8098951	177	Dolostone corridor
MHS0046	676393	8098951	178	Dolostone corridor
MHS0047	676433	8098951	178	Dolostone corridor
MHS0048	676141	8098223	172	Dolostone corridor
MHS0049	676224	8098231	171	Dolostone corridor
MHS0050	676300	8098223	173	Dolostone corridor
MHS0051	676380	8098223	174	Dolostone corridor
MHS0052	676452	8098220	173	Dolostone corridor
MHS0053	676498	8098222	176	Dolostone corridor
MHS0054	676540	8098226	172	Dolostone corridor
MHS0055	676583	8098223	171	Dolostone corridor

MHS0056	676617	8098220	172	Dolostone corridor
MHS0057	676660	8098221	175	Dolostone corridor
MHS0058	676699	8098222	173	Dolostone corridor
MHS0059	676781	8098222	176	Dolostone corridor
MHS0060	676856	8098223	177	Dolostone corridor
MHS0061	676419	8099818	172	Dolostone corridor
MHS0062	676339	8099823	171	Dolostone corridor
MHS0063	676260	8099821	171	Dolostone corridor
MHS0064	676213	8099818	174	Dolostone corridor
MHS0065	676176	8099823	175	Dolostone corridor
MHS0066	676137	8099822	176	Dolostone corridor
MHS0067	676098	8099820	175	Dolostone corridor
MHS0068	676059	8099824	173	Dolostone corridor
MHS0069	675975	8099820	176	Dolostone corridor
MHS0070	676143	8100670	173	Dolostone corridor
MHS0071	676209	8100673	177	Dolostone corridor
MHS0072	676269	8100670	176	Dolostone corridor
MHS0073	676324	8100670	176	Dolostone corridor
MHS0074	676388	8100676	176	Dolostone corridor
MHS0075	676297	8101021	173	Dolostone corridor
MHS0076	676220	8101021	174	Dolostone corridor
MHS0077	676180	8101021	176	Dolostone corridor
MHS0078	676131	8101021	176	Dolostone corridor
MHS0079	676093	8101023	175	Dolostone corridor
MHS0080	676055	8101025	175	Dolostone corridor
MHS0081	675981	8101025	176	Dolostone corridor
MHS0082	675898	8101022	180	Dolostone corridor
MHS0083	675427	8096409	164	Positive historic stream sample
MHS0084	675509	8096405	164	Positive historic stream sample
MHS0085	675548	8096405	164	Positive historic stream sample
MHS0086	675633	8096400	161	Positive historic stream sample
MHS0087	675696	8096410	166	Positive historic stream sample
MHS0088	676566	8096599	185	Southern Dolostone Corridor
MHS0089	676609	8096599	188	Southern Dolostone Corridor
MHS0090	676650	8096600	188	Southern Dolostone Corridor
MHS0091	676737	8096599	189	Southern Dolostone Corridor
MHS0092	676833	8096593	187	Southern Dolostone Corridor
MHS0093	676535	8096582	186	Southern Dolostone Corridor
MHS0094	676447	8096565	183	Southern Dolostone Corridor
MHS0095	675937	8100423	169	Dolostone corridor
MHS0096	675859	8100423	169	Dolostone corridor
MHS0097	675776	8100420	172	Dolostone corridor
MHS0098	675699	8100422	172	Dolostone corridor
MHS0099	675618	8100428	176	Dolostone corridor
MHS0100	676020	8100421	168	Dolostone corridor
MHS0101	676097	8100420	169	Dolostone corridor
MHS0102	676181	8100425	170	Dolostone corridor

MHS0103	676261	8100421	171	Dolostone corridor
MHS0104	676344	8100425	174	Dolostone corridor
MHS0105	676423	8100425	175	Dolostone corridor
MHS0106	676494	8100422	175	Dolostone corridor
MHS0107	665386	8112355	204	Positive historic soil sample
MHS0108	665472	8112358	204	Positive historic soil sample
MHS0109	665552	8112359	202	Positive historic soil sample
MHS0110	665630	8112357	199	Positive historic soil sample
MHS0111	665316	8112360	201	Positive historic soil sample
MHS0112	665236	8112359	198	Positive historic soil sample
MHS0113	665137	8112361	200	Positive historic soil sample
MHS0114	665143	8112663	198	Positive historic soil sample
MHS0115	665220	8112660	193	Positive historic soil sample
MHS0116	665306	8112661	194	Positive historic soil sample

Table 3 – BHP rock chip locations

All samples converted to MGA_2020_53

SAMPLEID	East	North	COMMENTS	Cu_ppm	Pb_ppm	Zn ppm	Fe %	Co_ppm
EK7282	696763	8093667	Sly Creek Sandstone	2	-5	3	1.2	-2
EK7283	696655	8093460	Ferruginous gossanous saprolite	1080	27	924	37.4	360
EK7285	696480	8093250	Ferrigno's saprolite/pisolite	118	16	1310	19.2	219
EK7286	696550	8093074	Chert fragments in a ferruginous matrix	27	7	122	3.5	15
EK7287	696284	8093936	ferruginous saprolite/pisolite	1180	20	181	39.8	119
EK7288	696214	8093866	ferruginous stained sandstone pebbles and pisoliths	82	36	44	13.6	26
EK7289	696178	8094112	black coloured banded siltstone	11	15	572	33	88
EK7290	695686	8094184	ferruginous and strongly weathered siltstone	39	24	480	35	64
EK7291	695721	8094219	highly weathered and ferruginous maroon colour	164	13	963	37.4	365
El5173	696500	8093600		11700	75	80	36.7	278
ES7415	696500	8093600		7430	12	180	43.7	550
ES7416	696450	8093550		91	40	671	29.2	24
ES7417	696450	8093550		425	7	421	44.3	524
ES7418	696300	8093400		5950	121	2310	32.9	184
ES7419	696450	8093600		1270	27	949	36.7	563
ES7420	696450	8093600		1080	28	998	43.4	280
ES7421	696700	8093500		5330	23	380	48.3	677
ES7422	696700	8093500		1520	13	435	45.8	403
ES7423	696700	8093500		975	18	82	48.5	322

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary			
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	 E79 Gold has recently undertaken rock chip and soil sampling activities within the Mountain Home Project. This report also references 19 Rock Chips taken by BHP Minerals during 1996. Rock chip samples were collected by hand and soil samples were taken from ~10- 15cm deep holes and sieved to 1mm. Samples have not yet been assayed by will undergo 4 acid multi-element analysis for the rock chips and Ultrafine+ analysis for the soil samples. BHP samples underwent analysis at Analabs – Townsville for Method GI-142 (ICP) 			
Drilling techniques	 Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Soils holes were hand dug to a depth of ~10cm 			
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias 	Not applicable as no drilling occurred			

Criteria	JORC Code explanation	Commentary		
	may have occurred due to preferential loss/gain of fine/coarse material.			
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Soil sample location and depth were recorded 		
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled 	 Samples have not yet been analysed but rock chip samples will undergo industry standard sample preparation techniques consisting of crushing and grinding. Soil samples will be sieved to 1mm in the field, with no further sample prep required BHP rock chip samples underwent industry standard sample prep ahead of analytical method GI-142 (ICP) 		
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. 	 All soil samples will be analysed using LabWest's UltraFine+[™] technique, whereby the sub 2 micro clay fraction is separated and analysed with the latest microwave technique and ICP- MS or ICP_OES machines. Samples will be digested using an UltraFine+[™] Technique followed by analysis of gold by ICPMS with lower detection limit of 0.5ppb Au. 50 multi- elements analysed by ICPMS/ICPOES and include; Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, In, K, La, Li, Lu, Mg, Mn, Mo, Ni, Ni, Di, Dd, Dr, Dt, Dt, Dt, Dt, Dt, Dt, Dt, Dt, Dt, Dt		

Criteria	JORC Code explanation	Commentary
		 Re, S, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, TI, Tm, U, V, W, Y, Yb, Zn, Zr No external standards were used Rock chips will be analysed using ALS 4 acid digest with ICP-MS or ICP_OES finish. 48 Elements to be analysed including;
		Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr
		 In the rock chips Gold will be analysed using a Fire assay with a 50gm charge. BHP Rock chips underwent GI-142 (ICP) analysis for Cu, Pb, Zn, Ag, As, Fe, Mn, Co, Ni, Cr, P, V, Au, Bi, Mo and Sb
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Data is logged onto paper in the field and entered into excel to go to a centralised database.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Sample locations were recorded with a handheld GPS in MGA2020 Zone 53S. RL was also recorded with handheld GPS but accuracy is variable.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Soil sample spacing is 40m along lines and line spacing is sporadic Rock chips were taken in an uneven distribution based on rock outcrops BHP Rock chips were sporadic in distribution, depending on rock outcrop.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Soil sample lines were completed on an east west pattern, roughly perpendicular to the trend of the main geological units. Rock chips were taken generally along strike of known mineralisation
Sample security	The measures taken to ensure sample security.	 Samples were stored on site and taken directly to the laboratory by via a freight company BHP sample security is unknown.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No audits or reviews have been undertaken.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The sampling program occurred on tenement EL32470, under control of E79 Gold Mines
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	Limited exploration has occurred on EL32470, in part due to the remote location of the project.
		From 1966-1968 undertook stream sediment samples, mapping soil samplings and IP surveys with copper found in samples around old workings.
		From 1990-1992 CRA undertook diamond exploration via stream sediment sampling, gravel sampling and rock chip sampling. In 1996 BHP Minerals undertook
		early-stage exploration over areas

Criteria	JORC Code explanation	Commentary
		now covered by tenement application EL33886. Work included rock chip sampling, soil sampling and an airborne EM survey. More recently, NT Minerals undertook broad spaced soil sampling and rock chip sampling.
Geology	Deposit type, geological setting and style of mineralisation.	To date there is not enough information to determine a definite singular mineralisation style. Data and observations show evidence of SEDEX style mineralisation prevalent in the area (McArthur River Mine, Teena Deposit), while evidence also shows features similar to the Tennant Creek ironstone hosted mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Not applicable as no drilling reported.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such 	Not applicable as no drilling reported.

Criteria	JORC Code explanation	Commentary
	 aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	 Not applicable as no drilling reported.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate maps are included within the body of this report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Not applicable as no drilling reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Relevant geological observations are included in this report.
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Additional geochemical surveys may be carried out in the future in order to assist in the delineation of drilling targets.